
DroNet: Efficient Convolutional Neural Network
Detector for Real-Time UAV Applications

Christos Kyrkou, George Plastiras,
and Theocharis Theocharides

KIOS Research and Innovation Center of Excellence

Department of Electrical and Computer Engineering

University of Cyprus

Nicosia, Cyprus

{kyrkou.christos,gplast01,ttheocharides}@ucy.ac.cy

Stylianos I. Venieris and Christos-Savvas Bouganis
Department of Electrical and Electronic Engineering

Imperial College London

{stylianos.venieris10,christos-savvas.bouganis}@imperial.ac.uk

Abstract—Unmanned Aerial Vehicles (drones) are emerging as
a promising technology for both environmental and infrastruc-
ture monitoring, with broad use in a plethora of applications.
Many such applications require the use of computer vision
algorithms in order to analyse the information captured from an
on-board camera. Such applications include detecting vehicles
for emergency response and traffic monitoring. This paper
therefore, explores the trade-offs involved in the development
of a single-shot object detector based on deep convolutional
neural networks (CNNs) that can enable UAVs to perform vehicle
detection under a resource constrained environment such as in
a UAV. The paper presents a holistic approach for designing
such systems; the data collection and training stages, the CNN
architecture, and the optimizations necessary to efficiently map
such a CNN on a lightweight embedded processing platform
suitable for deployment on UAVs. Through the analysis we
propose a CNN architecture that is capable of detecting vehicles
from aerial UAV images and can operate between 5-18 frames-
per-second for a variety of platforms with an overall accuracy
of ∼ 95%. Overall, the proposed architecture is suitable for UAV
applications, utilizing low-power embedded processors that can
be deployed on commercial UAVs.

I. INTRODUCTION

Deep learning (DL) has gathered significant interest recently

as an Artificial Intelligence (AI) paradigm, with success in a

wide range of applications such as image and speech recog-

nition, autonomous systems, self-driving cars, cyber-physical

systems, and many more. Among the most promising systems

that can utilize deep learning are Unmanned Aerial Vehicles

(UAVs) which are becoming an attractive solution for a wide

range of applications. In particular, Road Traffic Monitoring

(RTM), and Emergency Response (ER) systems constitute

a domain where the use of UAVs is receiving significant

interest. Under the above deployments, UAVs are responsible

for searching, collecting and sending, in real time, vehicle

information either for traffic regulation purposes or to aid

search and rescue in emergency response.

In traffic monitoring applications, UAVs can perform vehicle

identification, without the need for embedded sensors within

The dissemination of this work is being supported by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
739551 (KIOS CoE).

cars and can be deployed in an area of interest at no additional

cost; while for emergency response applications they greatly

enhance remote sensing and situational awareness capabilities.

A key challenge in the deployment of the above capabilities

is the computing platform of a UAV is required to (1) consume

minimal power, in order to minimize its effect on the battery

and flight time of the system and (2) process the input

data from its sensors with a low latency in order to make

critical decisions, such as object avoidance and navigation,

in real-time. Conventional on-board computing infrastructure

consists mainly of general purpose machines, such as multi-

core CPUs and low-power microcontrollers. The high compu-

tational workload of novel computer vision algorithms, such

as convolutional neural networks, has led to the introduction

of massively parallel architectures, with the prominence of

Graphics Processing Units (GPUs), as accelerators [1]. To

reach high performance, GPUs require the processing of

inputs in batches in order to amortize the communication

cost between the GPU and its external memory and achieve

high throughput. Despite achieving high throughput, batch

processing results in the deterioration of latency which makes

GPUs inappropriate, in most cases, for the latency-sensitive

tasks of a UAV. Moreover, the high power consumption of

modern GPUs provide a high overhead that can be prohibitive

for low power UAVs.

An alternative to on-board processing are cloud-centric se-

tups. In this scenario, the UAV collects data via its sensors and

transmits them to a base server for analysis. Despite the fact

that this case enables the UAV to save energy by off-loading

compute intensive operations, the wireless transmission of a

video feed can add significantly to the latency of the system.

In latency- and security-sensitive tasks, the high latency and

security risk of cloud computing may not be tolerated and

thus local, on-board processing is necessary. Furthermore,

in remote areas where there is no internet connection the

detection process cannot be offloaded.

The high computational cost of video processing poses a

challenge in mapping modern deep learning-based algorithms

on low-cost, low-power computing platforms. Hence, in this

paper we are concerned with adapting algorithms based on



deep learning for detecting vehicles, to make them efficient

and suitable for real-time UAV applications running on embed-

ded hardware platforms. We explore the parameter space in the

design of convolutional neural networks as well as previously

proposed models to identify an efficient architecture that can

perform vehicle detection on images faster than previous

works (40× speed-up) and at high accuracy (∼ 95%). The

final proposed model is referred to as DroNet and can be used

as a starting point for developing UAV-based object detectors

for various applications.

II. BACKGROUND AND RELATED WORK

A. Related Work on UAV-based Vehicle Detection

Object detection aims to find instances of objects from

known classes in an image. This task typically yields the

location and scale of the object in terms of a bounding box

together with a probability on its class. UAV object detection

has been extensively studied in the literature and traditional

techniques utilize background subtraction [2] to perform traffic

estimation from static UAVs, or use Haar Cascade classifiers

to detect vehicles [3]. The latest state-of-the-art techniques

rely on deep convolutional neural networks (CNNs) [4]. For

example a CNN is utilized in [5] as a classifier to detect

vehicles in grayscale images. However, such approaches need

to process thousands of search windows and are thus inefficient

for UAV platforms with limited hardware capabilities that need

to operate near real-time. A more recent example is shown in

[6] where the authors utilize a deep learning framework that

performs scene analysis of aerial images to first segment the

image into various regions, and then extract the regions that

correspond to vehicles and classify them into subcategories.

The proposed network involves stacked deep neural networks

for encoding and decoding the input image into segments

and runs off-line on an NVIDIA Tesla GPU, which makes

it unsuitable for a lightweight and low power UAVs.

Contrary to existing work, in this work we target on-board

processing on a UAV platform which may not be equipped

with such high-end hardware. To this end, we propose a

lightweight CNN architecture capable of running efficiently

on embedded processors. Recent advances in object detection

frameworks utilize deep learning and cast detection as a

regression problem where the goal is to predict the location of

bounding boxes in the image. Nevertheless, such techniques

have not yet been exploited in UAV applications. In this work,

we employ such techniques and tailor a custom single-shot

CNN, that is trained on image data specifically for top-view

vehicle detection, and is optimized to run on an embedded

platform on-board a UAV. The next section outlines the basic

principles of convolutional and single-shot detectors.

B. Convolutional Neural Network Detectors

Convolutional neural networks (CNNs) are biologically in-

spired hierarchical models that can be trained to perform a

variety of detection, recognition and segmentation tasks [6].

CNNs are neural network architectures composed of multiple

layers, with higher layers built on top of lower ones and

capturing more abstract representations of the input data. The

structure of a CNN typically comprises a feature extractor

stage followed by a classifier. In the last decade, a lot of

progress has been made on CNN-based object detection.

Numerous object detectors have been proposed by the deep

learning community, including Faster R-CNN [7], R-FCN [8],

YOLO [9] and SSD [10]. The main emphasis of these designs

is placed on improving (1) the detection accuracy and (2) the

computational complexity of their methods in order to achieve

real-time performance for mobile and embedded platforms

[11]. The CNN-based object detectors can be taxonomized

into two categories with respect to their high-level structure: 1)

region-based detectors, usually consisting of a region-proposal

stage followed by a classifier, and 2) single-shot detectors,

which employ a single CNN to perform end-to-end object

detection.

1) Region-based Detectors: Region-based detectors sepa-

rate the prediction of the bounding box position from the ob-

ject class prediction. A prominent example of such a classifier

is Faster R-CNN [7], which divides its processing pipeline

into two stages. The first stage, called the Region Proposal

Network (RPN), employs the feature extractor of a CNN

(e.g. VGG-16, ResNet, etc.) to process images and utilizes

the output feature maps of a selected intermediate layer in

order to predict bounding boxes of class-agnostic objects on

an image. In the second stage, the box proposals are used to

crop features of the same intermediate feature maps and pass

them through a classifier in order to both predict a class and

refine a class-specific box for each proposal. With typically

hundreds proposals per image passed separately through the

classifier, Faster R-CNN remains computationally heavy and

poses a challenge in achieving high performance in embedded

platforms.

2) Single-Shot Detectors: This class of detectors aims to

avoid the performance bottlenecks of the 2-step region-based

systems. The YOLO [9] framework casts object detection to

a regression problem and in contrast to the RPN + classifier

design of Faster R-CNN, employs a single CNN for the whole

task. YOLO divides the input image into a grid of cells

and for each cell outputs predictions for the coordinates of

a number of bounding boxes, the confidence level for each

box and a probability for each class. Compared to Faster

R-CNN, YOLO is designed for real-time execution and by

design provides a trade-off that favours high performance

over detection accuracy. In addition, the open-source released

version of YOLO has been developed using the C- and CUDA-

based Darknet [12] framework, which enables the use of both

CPUs and GPUs and is portable across a variety of platforms.

SSD [10] is a single-shot detector aims to combine the

performance of YOLO with the accuracy of region-based

detectors. SSD extends the CNN architecture of YOLO by

adding more convolutional layers and allowing the grid of

cells for predicting bounding boxes to have a wider range

of aspect ratios in order to increase the detection accuracy for

objects of multiple scales. Despite the high detection accuracy

and performance, the open-source released version of SSD has



been developed using the Caffe framework.

In this work, we focus on single-shot detectors due to their

high performance and applicability to mobile and embedded

systems. To this end, we select YOLO as our basis detection

framework because the portability of its C-based release

enables us to explore detection across diverse computing

platforms.

III. PROPOSED APPROACH

A. Data Collection

The training of the UAV-based single shot detector involves

the collection of appropriate image data. To compile the

training set, images were collected using a variety of methods

including cropping of satellite images, retrieving images from

the world-wide-web, and collecting urban traffic video footage

from a UAV. By employing a variety of acquisition methods

we were able to construct a dataset that captures vehicles under

different conditions with regards to illumination, viewpoint,

occlusion, color and type. In this way, after training, the

detector would learn to identify vehicles in a variety of

scenarios. Overall, a total of 350 images where collected with

a total of ∼ 5000 vehicles captured.

B. Training Process

The produced image database was used to train the networks

under consideration. The training process involved annotating

all vehicles in the images. We annotated only vehicles with

50% of their body visible within the image. A number of

CNN models were designed and trained using the Darknet

framework on an NVIDIA Titan Xp GPU. The different

models varied in terms of number of layers, filter sizes and

input image size. All models were trained using the loss

function defined in [9] to jointly predict whether vehicles were

detected together with the bounding boxes of vehicles in the

image.

C. CNN Models

While there has been extensive investigation on reducing

the complexity of well studied CNN models in the form

of parameter compression and quantization [13], there has

been limited effort on developing specialized CNN designs

for UAVs which need radical changes due to highly resource-

constrained environment both in computer power and memory

bandwidth. As such, in this work we focus on designing an

efficient and lightweight network from the beginning rather

than adapt an existing network. The main objective of our

design is to accelerate the execution of the model with minimal

compromise on the achieved accuracy. The Tiny-YOLO, model

is a smaller model of YOLO detection that is fast and works

efficiently on the GPU [9]. We adapted this basic model

to detect only one class, in our case top-view vehicles. We

explore the impact on performance by changing the structure

of the network such as the number of filters, the number of

layers, the image size, the number of convolution and the

pooling layers. We design different structures (SmallYoloV3,

TinyYoloVoc, TinyYoloNet, and DroNet) all shown in Fig. 1,

with different parameters including the layers and the type of

each layer (conv,maxpool,detection) together with the config-

uration of the layers in terms of the number of filters, the size

of filters in each layer and the input and the output size of the

feature maps. The overall design approach is as follows:

1) Number and Size of Filters: We use the structure of

Tiny-YOLO model [9] as a baseline and decrease the number of

filters in each layer in order to get a smaller network which can

lead to a faster detection. To reduce the amount of operations

per input, we reduced the number of filters by decreasing the

number of filters per layer and coarsely pruning whole layers.

For the convolutional layers we gradually increase the number

of filters up to a point as the net gets deeper so that we keep the

compute requirements low. In total there are 9 convolutional

layers in the models shown in Fig. 1, with the max-pooling

layers ranging between 4− 6.

2) Input Image Size: The size of the input image that is

processed by the network is a factor that can affect both

accuracy and performance. On the one hand, larger images

often lead to higher detection accuracy by the inclusion of

more information. Nevertheless, larger images also lead to

larger feature maps that have to be processed in the network

and hence greater computational and memory load. In our

experiments, we varied the image size in both the training

and testing stages from 352 to 608.

D. Application Level Optimizations

When the UAV platform is capable of providing altitude

information we can incorporate this into the detection process

by restricting the possible sizes of detected objects. For

example, vehicles can appear within a certain range based on

the UAV altitude; any objects that are not within this range

can be discarded as false detections, based on their size and

feasibility with respect to the UAV altitude and real object

size.

IV. EVALUATION AND EXPERIMENTAL RESULTS

In this section, we present a comprehensive quantitative

evaluation of TinyYoloVoc, TinyYoloNet, SmallYoloV3 and

DroNet which are CNN-based vehicle detectors. The ba-

sic network models are trained for various input sizes and

compared on the constructed vehicle dataset. Throughout the

experiments, three platforms were targeted: (1) an Intel CPU

i5-2520m at 3.20 GHz having two cores with two hardware

threads per core and 3 MB cache, (2) an Odroid UX4 with

an octacore Samsung Exynos-5422 CPU at 2GHz with 2 GB

of RAM and (3) Rasperry Pi 3 containing a quad-core ARM

Cortex-A53 at 1.20 GHz with 1 GB of RAM.

Metrics: To evaluate the performance of each model, we

employ the following four metrics:

1) Intersection over Union (IoU): In the context of object

detection, the IoU metric captures the similarity between the

predicted region and the ground-truth region for an object

present in the image. This metric is defined as the size of the

intersection of the predicted and ground-truth regions divided

by their union.



Layer Type Filters Size Stride Layer Type Filters Size Stride Layer Type Filters Size Stride Layer Type Filters Size Stride
0 Conv 16 3x3 1 0 Conv 4 3x3 2 0 Conv 4 3x3 2 0 Conv 16 3x3 2
1 Max-Pool 2x2 2 1 Max-Pool 2x2 2 1 Max-Pool 2x2 2 1 Max-Pool 2x2 2
2 Conv 32 3x3 1 2 Conv 8 3x3 1 2 Conv 8 3x3 1 2 Conv 4 1x1 1
3 Max-Pool 2x2 2 3 Max-Pool 2x2 2 3 Max-Pool 2x2 2 3 Max-Pool 2x2 2
4 Conv 64 3x3 1 4 Conv 16 3x3 1 4 Conv 16 1x1 1 4 Conv 8 3x3 1
5 Max-Pool 2x2 2 5 Max-Pool 2x2 2 5 Max-Pool 2x2 2 5 Max-Pool 2x2 2
6 Conv 128 3x3 1 6 Conv 32 3x3 1 6 Conv 32 1x1 1 6 Conv 16 1x1 1
7 Max-Pool 2x2 2 7 Max-Pool 2x2 2 7 Max-Pool 2x2 2 7 Max-Pool 2x2 2
8 Conv 256 3x3 1 8 Conv 64 3x3 1 8 Conv 32 3x3 1 8 Conv 32 1x1 1
9 Max-Pool 2x2 2 9 Conv 128 3x3 1 9 Conv 64 1x1 1 9 Conv 64 3x3 1

10 Conv 512 3x3 1 10 Conv 256 3x3 1 10 Conv 64 1x1 1 10 Conv 128 1x1 1
11 Max-Pool 2x2 2 11 Conv 512 3x3 1 11 Conv 32 1x1 1 11 Conv 256 1x1 1
12 Conv 1024 3x3 1 12 Conv 30 1x1 1 12 Conv 30 1x1 1 12 Conv 30 1x1 1
13 Conv 1024 3x3 1 13 Detect-Decode 13 Detect-Decode 13 Detect-Decode
14 Conv 30 1x1 1
15 Detect-Decode

TinyYoloVoc TinyYoloNet SmallYoloV3 DroNet

Fig. 1. Baseline Network Structures

DECODE

16@3x3

4@1x1

8@3x3
16@1x1

32@1x1

64@3x3

128@1x1

256@1x1

30@1x1

2x2 max pooling with stride 2

Fig. 2. Architecture of the DroNet single shot CNN detector for top-view vehicle detection. It is comprised of 3 × 3 and 1 × 1 convolutional layers and
max-pooling layers that reduce the feature maps size by 2×

2) Sensitivity: This metric is defined as the proportion of

true positives that are correctly identified by the detector. This

metric is calculated by taking into account the True Positives

(Tpos) and False Negatives (Fneg) of the detected cars as given

by (1).

Sensitivity =
Tpos

Tpos + Fneg
(1)

3) Precision: This metric is a widely used metric by the

object detection community and is defined as the proportion

of True Positives among all the detections of the system as

captured by (2).

Precision =
Tpos

Tpos + Fpos
(2)

4) Frames-Per-Second (FPS): The rate at which an object

detector is capable of processing incoming camera frames.

Score: In order to capture the overall performance of each

detector, we define a composite metric under the name score.

This metric consists of a linear combination of IoU, Sensitivity

and Precision together with the achieved FPS on a particular

platform. We parameterize the score with respect to a vector

of weights w ∈ [0, 1]4 as given by (3),

Score(w) = w1 × FPS +w2 × IoU (3)

+w3 × Sensitivity +w4 × Precision

subject to

4∑

i=1

wi = 1

where each weight captures the application-level importance

of each metric. Considering that in our case we target real-time

applications we assigned weights on these metrics to capture

the best trade-off between a fast detector and good accuracy.

We prioritized FPS with a weight of 0.4 over the other three

accuracy-related metrics, which were equally weighted with

0.2. Hence, the model with the highest overall score will be

the one that is best suited for our application demands and

platform constraints.

A. Parameter Space Exploration on CPU Platform

In this section, we present the effect of modifying the ar-

chitectural parameters of the underlying networks on detection

accuracy and performance on a CPU platform. The networks

vary with respect to their topology and the configuration of the

layers. The presented results are normalized, between CNNs

by first dividing them with the maximum value of each metric



across all CNNs, in order to lie in the range [0, 1]. Thus making

it easier to compare and contrast the different models and their

trade-offs.
1) Number and Size of Filters: Fig. 3 shows the perfor-

mance comparison between the four models. In our test set,

with 386 × 386 as image size, TinyYoloNet achieved 10×
higher performance than TinyYoloVoc with decreased detection

sensitivity and precision by 20% and 10% respectively and a

drop in IoU of 0.11. The network SmallYoloV3, with 386×386
as image size achieved the highest frame-rate among all

network designs with 23 FPS. Nevertheless, the substantial

reduction in the number of weights led to a decrease in

sensitivity which was 53% lower, which prohibits us from

using it for robust vehicle detection.

(a)

(b)

(c)

(d)

Fig. 3. Normalized performance metrics for basic model configurations for
different input image sizes: (a) TinyYoloVoC (b) SmallYoloV3 (c) SmallY-
oloV3 (d) DroNet.

Fig. 3 shows the significant performance gains starting from

TinyYoloVoc to TinyYoloNet followed by SmallYoloV3 and then

Fig. 4. Combined metric results for the best models using the weighted Score
metric.

to DroNet. For example, comparing these models for the same

input size, 386, the performance of DroNet is 30× faster

compared to TinyYoloVoc with a minimal drop of 0.08 on the

IoU. Moreover, the detection sensitivity and precision were

also affected in a limited manner with a decrease of 2% and

6% respectively. With respect to the weighted score metric,

DroNet achieved a 3% increase over TinyYoloVoc due to its

large speed up. Furthermore, we observe a slight increase in

false detections of DroNet. This is a symptom of the loss of

information during training that was caused by the decrease

in the size and number of layers.

2) Input Image Size: By increasing the input image size,

TinyYoloVoc demonstrated an increase of 0.17 in the IoU

and 10% in the sensitivity at the cost of 3× slower perfor-

mance. TinyYoloVoc with increase size of input images was

the model configuration with the highest accuracy on our

test set, reaching 97%. Fig. 3 presents the effect of different

input image sizes in the range 352 to 608 on the metrics

of our faster models. By using images of larger size, the

detection sensitivity is increased by an average of 1.28×
across the models. Conversely, the larger input size deteriorates

performance with an average of 0.81× across the models. A

trade-off between higher detection accuracy and acceptable

performance can be reached by applying inputs with a size

between 416 and 544. In this range, the accuracy gain is higher

than the penalty on detection speed.

Fig. 4 shows the best performance of each one of the models

on our dataset. In this context, based on the explored design

space, a size of 512×512 maximizes the weighted score metric

of the DroNet model and therefore we select it for use on

the UAV platform.

B. DroNet on UAV Platform

In this section we implement the DroNet model on a

DJI Matrice 100 UAV by interfacing it with two different

computing platforms.

1) Odroid-XU4: To map our proposed model on Odroid-

XU4 platform we used Darknet [12] to implement our net-

work structure. We first install Darknet for Odroid-XU4 with

OpenMP and loaded the pretrained DroNet weights. We use

the on board camera to retrieve real time video feed and



(a)

(b)

Fig. 5. Evaluation on UAV Platform: (a) Detection results on images acquired
from a UAV and from aerial databases. (b) Odroid board attached on DJI
Matrice 100 UAV.

pass it frame by frame to the processing board where the

vehicles are detected (5). Detection results of the DroNet
model from the UAV are shown in Fig. 5. Odroid performance

was around 8− 10 FPS with the accuracy maintained around

95%. The performance was decreased due to the fact that the

detection was spread uniformly across all cores with 50%
utilization for each one. This was a problem that we were

facing with Darknet implementation but it may be possible

to optimize implementation and employ the use of all CPU

cores with 100% usage in the future, which may result in

further improvement of performance. It is worth noticing that

the proposed DroNet model was 40× faster than TinyYoloVoc
performance which achieved only 0.1 FPS on Odroid.

2) Raspberry Pi 3 - Model B: Moreover, we also imple-

mented our proposed model on Raspberry Pi 3. The accuracy

was maintained again around 95% but the performance was

only 5 − 6 FPS this time mainly due to the less capable

chipset on this platform. However, for certain applications

which exhibit slow varying dynamics this option can be a

viable one.

V. CONCLUSION & FUTURE WORK

This paper presented an exploration of different single-shot

convolutional neural network detectors for UAV-based vehicle

detection. Specifically, a dataset was constructed and different

models were trained and evaluated for different configurations

and metrics. The resulting CNN referred as DroNet is capable

of 5 − 18 FPS on different platforms while achieving 95%
detection accuracy. Potential future work includes the perfor-

mance improvements by applying finer-level optimizations to

reduce bitwidth precisions. Finally, we also aim to significantly

enhance the training set with additional images and object

classes (e.g., pedestrians, motorbikes, etc.) suitable for UAV

applications such as emergency response.

ACKNOWLEDGMENT

Christos Kyrkou gratefully acknowledges the support of

NVIDIA Corporation with the donation of the Titan Xp GPU

used for this research.

REFERENCES

[1] L. Cavigelli, M. Magno, and L. Benini, “Accelerating Real-Time
Embedded Scene Labeling with Convolutional Networks,” in Design
Automation Conference (DAC). ACM, 2015, pp. 1–6.

[2] A. De Bruin and M. J. Booysen, “Drone-based traffic flow estimation
and tracking using computer vision,” 2015.

[3] C. L. Azevedo, J. L. Cardoso, M. Ben-Akiva, J. P. Costeira,
and M. Marques, “Automatic vehicle trajectory extraction by aerial
remote sensing,” Procedia - Social and Behavioral Sciences, vol.
111, pp. 849 – 858, 2014, transportation: Can we do more
with less resources? ? 16th Meeting of the Euro Working
Group on Transportation ? Porto 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877042814001207

[4] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for
object detection,” in Advances in Neural Information Processing
Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp.
2553–2561. [Online]. Available: http://papers.nips.cc/paper/5207-deep-
neural-networks-for-object-detection.pdf

[5] X. Chen, S. Xiang, C. L. Liu, and C. H. Pan, “Vehicle detection in
satellite images by parallel deep convolutional neural networks,” in 2013
2nd IAPR Asian Conference on Pattern Recognition, Nov 2013, pp. 181–
185.

[6] N. Audebert, B. Le Saux, and S. Lefvre, “Segment-before-detect:
Vehicle detection and classification through semantic segmentation of
aerial images,” Remote Sensing, vol. 9, no. 4, 2017. [Online]. Available:
http://www.mdpi.com/2072-4292/9/4/368

[7] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 6, pp. 1137–1149, 2017.

[8] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object Detection via Region-
based Fully Convolutional Networks,” in NIPS, 2016, pp. 379–387.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single Shot MultiBox Detector,” ECCV, pp. 21–37,
2016.

[11] G. D. T. N. Subarna Tripathi, Byeongkeun Kang, “Low-complexity
object detection with deep convolutional neural network for embedded
systems,” Proc.SPIE, vol. 10396, pp. 10 396 – 10 396 – 15, 2017.
[Online]. Available: http://dx.doi.org/10.1117/12.2275512

[12] J. Redmon, “Darknet: Open Source Neural Networks in C,”
http://pjreddie.com/darknet/, 2013–2016.

[13] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,”
ECCV, pp. 525–542, 2016.


